侵權(quán)投訴
訂閱
糾錯(cuò)
加入自媒體

被低估了的單目視覺(jué)識(shí)別

對(duì)單目來(lái)說(shuō)物體越遠(yuǎn),測(cè)距的精度越低,硬件上的缺點(diǎn)可以通過(guò)算法去彌補(bǔ),近日有兩篇關(guān)于單目視覺(jué)的研究論文曝光,一篇是單目視頻的深度估計(jì),另一篇?jiǎng)t是單目3d物體識(shí)別,在數(shù)據(jù)集下測(cè)試都取得了不錯(cuò)的效果,我們熟悉的單目攝像頭可能一直被低估了。

攝像頭是自動(dòng)駕駛汽車中重要的傳感器之一,在自動(dòng)駕駛過(guò)程中的首要任務(wù)就是道路識(shí)別,主要是圖像特征法和模型匹配法來(lái)進(jìn)行識(shí)別。行駛過(guò)程中需要進(jìn)行障礙物檢測(cè)和路標(biāo)路牌識(shí)別等,此時(shí)車輛上的信息采集便可以運(yùn)用單目視覺(jué)或者多目視覺(jué)。

由于很多圖像算法的研究都是基于單目攝像機(jī)開發(fā)的,因此相對(duì)于其他類別的攝像機(jī),單目攝像機(jī)的算法成熟度更高;趩文繑z像頭可以用來(lái)定位、目標(biāo)識(shí)別等。但是相比多目,單目有著先天的缺陷,視野信息不能夠豐富,單目測(cè)距的精度也較低。

不過(guò)單目攝像頭的作用還未發(fā)揮到極致,近日有兩篇關(guān)于單目視覺(jué)的研究,讓眾多研究者驚艷,原來(lái)單目一樣可以有不錯(cuò)的表現(xiàn)。

Paper1:Orthographic Feature Transform for Monocular 3D Object Detection

單目3d物體檢測(cè)是一件很有挑戰(zhàn)性的事情,目前最先進(jìn)系統(tǒng)的成績(jī)也不及用激光雷達(dá)的1/10,劍橋大學(xué)的科學(xué)家利用單目視覺(jué)進(jìn)行3d物體識(shí)別,通過(guò)引入正交特征變換,使基于圖像的特征映射到正交3D空間,來(lái)避免形成圖像域,可以全面地推斷出各個(gè)物體比例尺寸以及相隔的距離。通過(guò)在KITTI數(shù)據(jù)集里測(cè)試,發(fā)現(xiàn)與前人的Mono3D方法對(duì)比,這種方法在鳥瞰圖平均精確度、3D物體邊界識(shí)別上各項(xiàng)測(cè)試成績(jī)上均優(yōu)于對(duì)手。

尤其在探測(cè)遠(yuǎn)處物體時(shí)要遠(yuǎn)超Mono3D,遠(yuǎn)處可識(shí)別出的汽車數(shù)量更多。甚至在嚴(yán)重遮擋、截?cái)嗟那闆r下仍能正確識(shí)別出物體。在某些場(chǎng)景下甚至達(dá)到了3DOP系統(tǒng)的水平。

在這項(xiàng)工作中,提出的一種新穎的單目三維物體檢測(cè)方法,基于在鳥瞰視野范圍內(nèi)操作的,減輕了許多不良圖像的屬性,更易于推斷出世界的3D結(jié)構(gòu)。用一種簡(jiǎn)單的正交特征變換,將基于圖像的特征轉(zhuǎn)換為這種鳥瞰視圖表示,并描述了如何使用圖像積分有效地實(shí)現(xiàn)它,以深二維卷積網(wǎng)絡(luò)的形式應(yīng)用于提取的鳥瞰特征,取得了不錯(cuò)的效果,說(shuō)明單目還有很大可開發(fā)的空間。

Paper2:A Structured Approach to Unsupervised Depth Learning from Monocular Videos

這是谷歌的工程師做的一個(gè)研究,他利用單目視頻深度估計(jì),自從2014年NIPS上出現(xiàn)第一篇用CNN-based來(lái)做單目深度估計(jì),近幾年也不斷涌現(xiàn)出一些做單目深度估計(jì)的文章,有直接依靠深度學(xué)習(xí)和網(wǎng)絡(luò)架構(gòu)得到結(jié)果,還有依靠于深度信息本身的性質(zhì)進(jìn)行估計(jì),基于CRF和基于相對(duì)深度方法的,本篇文章是基于無(wú)監(jiān)督學(xué)習(xí)單目視頻深度估計(jì)。文中的方法能夠模擬運(yùn)動(dòng)物體并產(chǎn)生高質(zhì)量的深度估計(jì)結(jié)果,與以前的單目視頻無(wú)監(jiān)督學(xué)習(xí)方法相比,該方法能夠恢復(fù)移動(dòng)物體的正確深度。也就說(shuō),能夠正確地恢復(fù)與自身運(yùn)動(dòng)車輛相同速度的移動(dòng)汽車的深度。因?yàn)橐慌_(tái)相對(duì)靜止的車輛,往往會(huì)表現(xiàn)出與地面相同的無(wú)線深度特征,解決了高動(dòng)態(tài)場(chǎng)景中的問(wèn)題。

這些方法仍需要很長(zhǎng)時(shí)間去測(cè)試其可靠性,相比激光雷達(dá),單目算法一旦能在無(wú)人駕駛汽車上成功應(yīng)用,將會(huì)節(jié)省一大筆費(fèi)用,單目視覺(jué)識(shí)別可能還有著無(wú)限的市場(chǎng)潛力。

聲明: 本文由入駐維科號(hào)的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)